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Note 

Implementation of 
a Random Number Generator in OCCAM 

In this note we want to communicate the implementation of a shift-bit register 
random number generator on a transputer system. Such transputer systems have 
now become widely available and are used for large scale simulations. As a matter 
of fact, we are currently assembling a large number of these transputers to build a 
parallel supercomputing structure for the Condensed Matter Theory Group at the 
University of Mainz. 

Among the simulations already performed using transputer-based parallel com- 
puting structures are those of neural networks [l], lattice gauge theory [2], and 
Monte Carlo simulations of the Ising model [3,4], using the micro canonical 
ensemble method [S]. 

Monte Carlo and other simulation methods [6] rely on high-quality random 
numbers. For such simulations they should have no correlations and the cycle 
length must be extremely long (for many simulations the cycle length of the linear 
congruential random number generators is by far too small!). Recently it has 
become evident that linear congruential random number generators exhibit correla- 
tions leading to subtle errors in the results of some Monte Carlo simulations [7-91. 
In these simulations one is studying the dynamic evolution of a system in non-equi- 
librium. An initially stable system is brought to a thermodynamically unstable non- 
equilibrium state by a (temperature) quench from the one into the two-phase region 
[9]. During the subsequent time evolution, the physical instability of the system to 
the long wavelength perturbations is responsible for amplifying not only the ther- 
mal fluctuations but also the correlations present in the initial postquench state. If 
the random number generator used in MC simulations of such systems has some 
inherent correlations then these get amplified due to the long wavelength instability 
of the system. In this sense such physical systems act as amplifiers of correlations 
that seem not to be dealt with in the usual statistical tests. 

In the above described physics application one observes, for example, that the 
system exhibits after some time an unphysical slab structure. Also the order 
parameter and the energy evolution after a quench exhibit unphysical results. 

The linear congruential random number generator [l&12] 

xi+ l s ax, mod m 

which generates recursively from a seed x,, a sequence of pseudo random numbers 
.xi shows dramatic correlations leading to unphysical results [7, 81. These were 
observed for mulipliers 
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a = 65539, a = 16807 

with the modulo m = 2” - 1 in simulations of the domain growth process. Also the 
modulo generator RANP 

a = 1664525. m = 232 

implemented on the transputer development systems TDS [13, 141 for the trans- 
puter T414/T800 shows these correlations. There are suggestions for other choices 
of multipliers [ 15, 163 which in a certain statistical sense are optimal. It should be 
noted here that one of these optimal choices indeed is a = 16807. However, the 
simulations show that there are possibly very longrange correlations among the 
random numbers generated with this multiplier not accounted for in optimality 
criteria of the statistical tests. Those are the ones creating the unphysical simulation 
results. 

In the studies of the domain growth problem it was found empirically that the 
shift-bit register generator of Tausworth [ 171 (or F(r, s, @) in the nomenclature of 
Marsaglia [ 193) gave much better results. The simple test of d-space nonunifor- 
mity, i.e., the filling of a d-dimensional lattice using consecutive random numbers, 
reveals that the shift-bit register generator is superior to the linear congruential 
generator in these applications. 

The shift-bit register generator is a generalization of the linear congruential 
generator. New pseudo random numbers are generated from the previously 
generated ones by the recursion relation 

Instead of this full relation one usually takes the linear recursion 

on the space of (0, 1). The operation + ‘is then the exclusive-or operator ( > < in 
OCCAM). The most popular choice for the pair (p, q) is (250, 103) [ 181 and is 
known as the “R250.” 

The program listing shows the implementation of this algorithm in the OCCAM 
programming language. This program was run and tested on the multitransputer 
system of the Condensed Matter Theory Group at the University of Mainz. 

Table I lists the results of test runs using the random number generator R250. 
These results are not meant to test the quality of the random number generator, but 
.to give a guidance for those who have implemented the program given here. Given 
are the seed value, the sample size, and the values obtained for the mean, the 
standard deviation, the skewness, and the excess. Let sk with k = 2, 3,4 denote the 
central moments with respect to the mean; then the sample skewness and the 
sample excess are defined as 

skew = (s~/s?)~“~ 

excess = (s4/sr)’ - 3. 
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TABLE I 

Results of Test Runs of the OCCAM Version of the Random Number Generator R250 
Using the Seed Value of 4711 

Sample size 
Time/number Time(RANP) 

Mean Std. dev. Skew Excess (s) (s) 

10’ 0.4818 0.2909 + 0.064 - 1.125 2.48 x 10 ’ 2.64 x 10 ’ 
10” 0.4931 0.2880 -0.041 - 1.194 2.31 x lo-’ 2.63 x lo-’ 
lo5 0.5007 0.2891 - 0.002 - 1.202 2.31 x 10-j 2.63 x lo-’ 
10h 0.5004 0.2888 -0.003 - 1.201 2.31 x lo-’ 2.63 x lo-’ 

As regards to the timing (note that the results quoted are for a single transputer), 
we found that the R250 is just as fast as the conventional generator. Hence nothing 
is lost with respect to time but much is gained with respect to accuracy in Monte 
Carlo simulations. 

ALGORITHM. OCCAM version of the random number generator R250. 

PROC r250 (VAL INT n.f, [ lOOOl] REAL32 x.f, [251] INT32 m.f) 

- The array m.f has to be initialized with 250 integer32 random 
- numbers before the first call of r250 (using for instance the 
- built in RANP random number generator). In this example the 
~ maximum possible number of random numbers to be generated in 
- one call is taken to be 100000. nf is the actual number of 
- numbers to be generated. 

INT iloop, num.of.loops, looprest, ind: 
INT irand, maxint: 
REAL32 rmax: 

SEQ 
maxint : = # 7EEEEEEE 
rmax : = REAL32 ROUND maxint 
num.of.loops : = n.f/250 
loop.rest := n.f REM 250 
irand := 1 
SEQ iloop = 1 FOR num.of.loops 

SEQ 
SEQ ind = 1 FOR 147 

SEQ 
m.f[ind] := m.f[ind] > < p.f[ind + 1031 
conversion (x.f[irand], m.f[ind]) 
irand : = irand + 1 

SEQ ind x 1 FOR 103 
SEQ 

m.f[ind + 1471 : = m.f[ind + 1471 > < m.f[ind] 
conversion (x.f[irand], m.f[ind + 1471) 
irand : = irand + 1 
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IF 
loop.rest = 0 

SKIP 
loop.rest < = 147 

SEQ ind = 1 FOR loop.rest 

SEQ 
m.f[ind] : = m.f[ind] > < m.f[ind + 1033 
conversion (x.f.[irand, m.f[ind]) 
irand : = irand + 1 

loop.rest > 147 

SEQ 
SEQ ind = 1 FOR 147 

SEQ 
m.f.[ind] := m.f[ind] > < m.f[ind + 1031 
conversion (x.f[irand], m.f[ind]) 
irand : = irand + 1 

SEQ ind = 1 FOR (loop.rest - 147) 

SEQ 
m.f[ind + 1471 := m.f[ind + 1471 > i m.f[ind] 
conversion (x.f[irand], m.f[ind + 1473) 
irand : = irand + 1 
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